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Chapter 3
The International Linear Collider
Accelerator

3.1 The ILC Technical Design
3.1.1 Overview

The International Linear Collider (ILC) is a high-luminosity linear electron-positron collider based on
1.3 GHz superconducting radio-frequency (SCRF) accelerating technology. Its centre-of-mass-energy
range is 200–500 GeV (extendable to 1 TeV). A schematic view of the accelerator complex, indicating
the location of the major sub-systems, is shown in Fig. 3.1:
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Figure 3.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale).

• a polarised electron source based on a photocathode DC gun;

• a polarised positron source in which positrons are obtained from electron-positron pairs by
converting high-energy photons produced by passing the high-energy main electron beam
through an undulator;

• 5 GeV electron and positron damping rings (DR) with a circumference of 3.2 km, housed in a
common tunnel;

• beam transport from the damping rings to the main linacs, followed by a two-stage bunch-
compressor system prior to injection into the main linac;

• two 11 km main linacs, utilising 1.3 GHz SCRF cavities operating at an average gradient of
31.5 MV/m, with a pulse length of 1.6 ms;
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Frontiers
• Energy Frontier: Large Hadron Collider (LHC) at 13 TeV now, High Luminosity (HL)- 

LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of 
decades.  

• Having found Higgs, moving to studying the SM Higgs find new Higgses 

• Test naturalness (Was the Universe and accident?) by searching for New Physics 
like Supersymmetry that keeps Higgs light without 1 part in 10

18 
fine-tuning of 

parameters.   

• Find Dark Matter (reasons to think related to naturalness) 

• Intensity Frontier:  

• B Factories: upcoming SuperKEKB/SuperBelle 

• Neutrino Beam Experiments:  

• Series of current and upcoming experiments: Nova, MicroBooNE, SBND, 
ICURUS 

• US’s flagship experiment in next decade: Long Baseline Neutrino Facility 
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity 
Frontier

• Measure properties of b-quarks and neutrinos (newly discovered mass)… search 
for matter/anti-matter asymmetry. 

•  Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.   

• Precision Frontier: International Linear Collider (ILC), hopefully in next decade. Most 
energetic e

+
e

-
 machine.  

• Precision studies of Higgs and hopefully new particles found at LHC.

● Long Baseline Neutrino 
Experiment is the next major 
neutrino experiment 
proposed

– Build a large scale (34 kTon) 
LArTPC deep underground

– Build it at a baseline that 
optimizes the oscillation 
parameters to probe CP 
violation and the mass 
hierarchy

– Build  it deep underground to 
maximize your sensitivity and 
allow you to do more physics

– Shoot a powerful beam of 
neutrinos at it

LBNELBNE
LLongong B Baselineaseline N Neutrinoeutrino E Experimentxperiment



Where is ML needed?
• Traditionally ML Techniques in HEP 

• Applied to Particle/Object Identification 

• Signal/Background separation 

• Here, ML maximizes reach of existing data/detector… equivalent to additional integral 
luminosity. 

• There is lots of interesting work here… and potential for big impact. 

• Now we hope ML can help address looming computing problems 

• Reconstruction 

• LArTPC- Algorithmic Approach very difficult 

• HL-LHC Tracking- Pattern Recognition blows up due to combinatorics 

• Simulation 

• LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation. 
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Reconstruction Chain
• Left: Our provisional 

 model for a DUNE FD  
   reconstruction chain. 
!
• Between LBNE and  
   LBNO, every step in 
   this chain exists. !
    - Great starting point 
       for DUNE! 
!
• Will summarise 
   current status over 
   next few slides.

LArTPC Reco Challenge
• Neutrino Physics has a long history of hand scans.  

• QScan: ICARUS user assisted reconstruction.   

• Full automatic reconstruction has yet to be 
demonstrated.  

• LArSoft project:  

• art framework + LArTPC reconstruction 
algorithm 

• started in ArgoNeuT and contributed to/used 
by many experiments. 

• Full neutrino reconstruction is still far from 
expected performance.

Selection of  νe events
•  Reference points and vertices can be defined to mark interesting 

features of the event in a 2D view (primary interaction, delta rays, 
decay point of tracks, shower features, muon begin/end point for the 
momentum measurement via MCS); 

•  They can be selected manually in Qscan and can be associated to 
clusters and matched between different views providing additional 
input to 3D reconstruction; 

•  An automatic tool for the primary vertex identification is available; 
•  Reference points and vertices can be saved in root files; 

Reference points and vertices

Slide#  : 9ICARUS_2015



Computing Challenge
• Computing is perhaps the biggest challenge for the HL-LHC 

• Higher Granularity = larger events. 

• O(200) proton collision / crossing: tracking pattern recognition 
combinatorics becomes untenable. 

• O(100) times data = multi exabyte datasets.  

• Moore’s law has stalled: Cost of adding more transistors/silicon area no longer 
decreasing…. for processors. Many-core co-processors still ok. 

• Naively we need 60x more CPU, with 20%/year Moore’s law giving only 
6-10x in 10-11 years. 

• Preliminary estimates of HL-LHC computing budget many times larger than 
LHC. 

• Solutions: 

• Leverage opportunistic resources and HPC (most computation power in 
highly parallel processors). 

• Highly parallel processors (e.g. GPUs) are already > 10x CPUs for certain 
computations. 

• Trend is away from x86 towards specialized hardware (e.g. GPUs, Mics, 
FPGAs, Custom DL Chips) 

• Unfortunately parallelization (i.e. Multi-core/GPU) has been extremely 
difficult for HEP.

Estimates of Resource Needs for HL-LHC (WLCG)

(Slide from WLCG Workshop Intro, Ian Bird, 8 Oct, 2016)
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Reconstruction



How do we 
“see” particles?
• Charged particles ionize media 

• Image the ions. 

• In Magnetic Field the curvature of 
trajectory measures momentum. 

• Momentum resolution degrades as 
less curvature: σ(p) ~ c p ⊕ d.  

• d due to multiple scattering.   

• Measure Energy Loss (~ # ions) 

• dE/dx = Energy Loss / Unit Length = 
f(m, v) = Bethe-Block Function 

• Identify the particle type 

• Stochastic process (Laudau) 

• Loose all energy → range out.  

• Range characteristic of particle type.

28 2 Interactions of Particles in Matter

Fig. 2.3 Energy loss in air
vs. the kinetic energy for
some charged particles.
Figure calculated using
Eq. (2.3)

For the purpose of a qualitative discussion the Bethe–Bloch equation can be
approximated as

dE
dx

≈ ρ (2 MeVcm2/g)
Z2

β2 (2.4)

If the density is expressed in g/cm3, the energy loss is in units MeV/cm. In the
literature, the term ‘energy loss’ sometimes refers to the loss divided by the density.
In the latter case, the energy loss has the units MeV cm2/g. For electrons with energy
of more than 100 keV, the velocity is close to the velocity of light (β≈1), and the
energy loss is about 2 MeV/cm multiplied by the density of the medium.

For all particles, the energy loss decreases with increasing energy and eventually
reaches a constant, energy-independent value. That value is approximately the same
for all particles of unit charge (see Fig. 2.3).

For alpha particles the velocity is usually much less than the velocity of light, and
the energy loss is much larger. However, the Bethe–Bloch equation is valid only if
the velocity of the particle is much larger than the velocity of the electrons in the
atoms, and for alpha particles, this condition is usually not satisfied. The velocity of
electrons in atomic orbits is of the order of 1% of the velocity of light. For particle
velocities that are small compared to the typical electron velocities in the atoms,
the energy loss increases with the energy and reaches a maximum when the particle
velocity is equal to the typical electron velocity. After this maximum, the energy
loss decreases according to the Bethe–Bloch equation. This behaviour is illustrated
in Figs. 2.4 and 2.13.

Since particles lose energy when travelling in a medium, they will eventually
have lost all their kinetic energy and come to rest. The distance travelled by the



Tracking
• Measure Charged particle trajectories. If B-field, then 

measure momentum.

PATTERN 

BANK

1 2 3 4
…

Track parameters found in a 2nd step

(more sequential, but fast if you used 

enough AM cells in the first stage)

A pattern is a sequence of hits in the different layers, represented by coordinates. 

A particle trajectory is a specific sequence of hits. Hit are read out sequentially, and 

compared in parallel to a set of pre-calculated “track patterns” - NO combinatorics. 

Based on 

custom ASIC

Matched 

patterns 

queued to 

 output. 

Track reconstruction by pattern-matching 

using “Associative Memory” 



How do we “see” particles?
• Particles deposit their energy in a stochastic process know as 

“showering”, secondary particles, that in turn also shower. 

• Number of secondary particles ~ Energy of initial particle.  

• Energy resolution improves with energy: σ(E) / E = a/√E ⊕ b/E ⊕ c.  

• a = sampling, b = noise, c = leakage.   

• Density and Shape of shower characteristic of type of particle. 

• Electromagnetic calorimeter: Low Z medium  

• Light particles: electrons, photons, π
0
 →γγ interact with electrons 

in medium 

• Hadronic calorimeters: High Z medium 

• Heavy particles: Hadrons (particles with quarks, e.g. charged 
pions/protons, neutrons, or jets of such particles) 

• Punch through low Z.  

• Produce secondaries through strong interactions with the 
nucleus in medium. 

• Unlike EM interactions, not all energy is observed. 
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Calorimetry
• Make particle interact and loose all energy, which we measure. 2 types:  

• Electromagnetic: e.g. crystals in CMS, Liquid Argon in ATLAS.

• Hadronic: e.g. steel + 
scintillators 

• e.g ATLAS: 

• 200K Calorimeter cells 
measure energy 
deposits. 

• 64 x 36 x 7 3D Image



LHC/ILC detectors



LARIAT MOTIVATION: NEEDS OF NEUTRINO EXPTS 
In neutrino experiments, try to determine flavor and estimate energy of 

incoming neutrino by looking at outgoing products of the interaction.  

2015/10/19 LARSOFT RECONSTRUCTION ASSESSMENT AND REQUIREMENTS WORKSHOP 2 

Incoming neutrino: 
 Flavor unknown 
 Energy unknown 

Outgoing lepton: 
 Flavor: CC vs. NC, !+ vs. !-, e vs. " 
 Energy: measure 

Mesons: 
 Final State Interactions 
 Energy? Identity? 

Outgoing nucleons: 
 Visible? Energy? 

Target nucleus: 
 Nucleus remains intact for low Q2 

 N-N correlations 

Typical neutrino event!

Jen Raaf

Neutrino Detection



Neutrino Detectors
• Need large mass/volume to maximize chance of neutrino interaction. 

• Technologies: 

• Water/Oil Cherenkov 

• Segmented Scintillators 

• Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.

• Provides tracking, calorimetry, and ID all in same detector. 

• Chosen technology for US’s flagship LBNF/DUNE program.  

• Usually 2D read-out… 3D inferred. 

• Gas TPC: full 3D 
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Principal of LArTPCPrincipal of LArTPC

LArTPCs make 3D reconstruction possible!

● wire planes give 2D position information
● the third dimension is obtained by combining timing information 
    with drift velocity (v

d
): x= v

d
(t-t

0
)  → hence, a “Time projection chamber”
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e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.

5

ArgoNeuT νe-CC candidate

2 π0’s

e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.
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ArgoNeuT νe-CC candidate

2 π0’s



HEP Computing

Reconstruction

Generation

Simulation

Digitization

Generation

Fast Simulation

Derivation

Statistical 
Analysis

KHz KHz

mHz

Hz

KHz
Hz

1000 
Hz

Hz

Hz

High-level Trigger

Fast Simulation

Data Analysis &
Calibration

Full Simulation

109 events/year 



• Starts with raw inputs  (e.g. Voltages)

• Low level Feature Extraction: e,g,  
Energy/Time in each Calo Cell

• Pattern Recognition: Cluster adjacent 
cells. Find hit pattern.

• Fitting: Fit tracks to hits.

• Combined reco: e.g.:

• Matching Track+EM Cluster = Electron. 

• Matching Track in inter detector + 
muon system = Muon

• Output particle candidates and 
measurements of their properties (e.g. 
energy)

EventSelector
Service
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Builder

Cell 
Calibrator

Cluster 
Builder

Cluster 
Calibrator

Jet Finder
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Correction A
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Cluster 
Correction A

Cluster 
Correction B

Noise Cutter

Jet Finder

Jet 
Correction

Channels

Cells
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Fig. 4: (a): Pulse arriving in phase with respect to the 40MHz clock. (b): pulse arriving out of phase.

Fig. 5: Example of many pulses of random phases overlaid.
Normalized to unit amplitude and shifted to peak at t = 0 ns.

of the pulse is found reliably. The amplitude and mean of the
Gaussian are used to scale and shift the pulse shape.

C. Smoothing
The statistics in some energy bins is low. For this reason

before storing the pulse shapes for later use in the reconstruc-
tion, the shapes are smoothed. Two smoothing algorithms were
used: the built-in ROOT-function Smooth [5] and a spline
method [6]. The function Smooth is found to be sensitive to
larger statistical fluctuations, especially in the tail. The spline
method is the better of the two since it is insensitive to these
fluctuations, and therefore this method was adopted.

D. Energy bins
To distinguish between pulses of different energies, pulses

are sorted into energy bins. A measure of the energy of a
pulse, Q, is defined:

Q =
9∑

i=2

Si − 8 · S1, (2)

TABLE I: Definition of energy bins, based on number of
ADC counts.

Low gain High gain
Q-bin Q-value (counts) Q-value (counts)
Q0 30 < Q < 50 0 < Q < 10

Q1 50 < Q < 70 10 < Q < 50

Q2 70 < Q < 90 50 < Q < 100

Q3 90 < Q < 140 100 < Q < 200

Q4 140 < Q < 200 200 < Q < 400

Q5 200 < Q < 250 400 < Q < 800

Q6 250 < Q < 300 800 < Q < 1200

Q7 300 < Q < 350 1200 < Q < 1600

Q8 350 < Q < 400 1600 < Q < 2000

Q9 400 < Q < 800 2000 < Q < 10000

where S1, ...S9 are the nine samples measured for each
recorded pulse and S1 is the pedestal. The value of Q is used
to define bins as listed in table I.

V. PULSE-TO-PULSE VARIATIONS
After the pulse shapes have been normalized, all pulse

shapes, i.e. from all channels and all energies, can be overlaid.
The width of the band defined by all individual measurements
will show the maximum pulse-to-pulse variation. All pulse
shapes from low gain overlaid are shown in figure 6. A
widening of the band in the tail (right of the peak) is observed.
When the pulses are sorted into energy bins a narrowing

of the width of the band is observed, indicating some energy
dependence. Especially the tail region, beyond 60 ns, flattens
out with increasing value of Q.
In figure 7 (a), the mean pulse shapes for each energy bin

are overlaid. For low energies, there is an oscillation in the tail
which flattens out towards higher energy bins. This is shown
in figure 7 (b).

VI. TOY MONTE CARLO
One way of quantifying the difference between two pulse

shapes is to study the energy bias that would be introduced in

Reconstruction



Deep Learning



Why go Deep?
• Better Algorithms 

• DNN-based classification/regression generally out perform hand crafted algorithms. 

• In some cases, it may provide a solution where algorithm approach doesn’t exist or fails. 

• Unsupervised learning: make sense of complicated data that we don’t understand or expect.  

• Easier Algorithm Development: Feature Learning instead of Feature Engineering  

• Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS > 
$250M spent software) 

• Quickly perform performance optimization or systematic studies.  

• Faster Algorithms 

• After training, DNN inference is often faster than sophisticated algorithmic approach. 

• DNN can encapsulate expensive computations, e.g. Matrix Element Method.   

• Generative Models enable fast simulations. 

• Already parallelized and optimized for GPUs/HPCs.  

• Neuromorphic processors.
17







Datasets



Public Datasets
• Biggest obstacles to DNN research is Data accessibility. 

• Detector level studies require CPU intensive simulations.  

• DNNs require large training sets with full level of detail (i.e. not 4-vectors). 

• Experiments have such samples, but they are not easily accessible and not public. 

• Difficult to collaborate with DL community or other experiments. 

• Public datasets: 

• We provide data, tools (e.g. fast data read), fully setup problems. Goal is build working groups around each dataset. 

• LArTPC (Sepideh Shahsavarani, AF): LArIAT detector. 1 M of every particle species (including neutrinos). 

• Challenges: Particle/Neutrino Classification and Energy Reco, Noise Suppression, 2D->3D.  

• Calorimetry (Maurizio Pierini, Jean-Roch Vlimant, Nikita Smirnov, AF): LCD Calorimeter.  

• Challenges: PID/Energy Reco. Simulation.  

• Tracking 

• Simple 2D tracking data shown at Connecting the Dots will be used for DS@HEP. 

• TrackingML/ACTS (David Rousseau, Andreas Salzberger, … ) HL-LHC like detector/environment. 

• CMS Jets: Full Reco Simulated Jets for boosted object and jet ID



Calorimeter Dataset
• CLIC is a proposed CERN project for a linear 

accelerator of electrons and positrons to TeV energies 
(~ LHC for protons) 

• LCD is a detector concept. 

• Not a real experiment yet, so we could simulate data 
and make it public.  

• The LCD calorimeter is an array of absorber material 
and silicon sensors comprising the most granular 
calorimeter design available  

• Data is essentially a 3D image

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 

4

A long way to an optimal network architecture
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• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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DNN vs BDT
• The classification problem, as setup, ends up being very 

simple. 

• The real backgrounds are jets, not single particles. 

• V2 of dataset will address this shortcoming 

• Comparison to BDT trained on features



LCD Data Details
• 4 particle types, separate into directories. Needs to be mixed for training. 

• Images: 

• ECAL: 25x25x25 cell section of calorimeter around particle. 

• HCAL: 5x5x60 cell section of calorimeter around particle. 

• True Energy and PDG ID 

• Features: 

• 'ECALMeasuredEnergy', 'ECALNumberOfHits', 
'ECAL_ratioFirstLayerToTotalE', 'ECAL_ratioFirstLayerToSecondLayerE', 
'ECALMoment1X', 'ECALMoment2X', 'ECALMoment3X', 'ECALMoment4X', 
'ECALMoment5X', 'ECALMoment6X', 'ECALMoment1Y', 'ECALMoment2Y', 
'ECALMoment3Y', 'ECALMoment4Y', 'ECALMoment5Y', 'ECALMoment6Y', 
'ECALMoment1Z', 'ECALMoment2Z', 'ECALMoment3Z', 'ECALMoment4Z', 
'ECALMoment5Z', 'ECALMoment6Z', 'ECAL_HCAL_ERatio', 
'ECAL_HCAL_nHitsRatio'



LCD Dataset Challenges/
Tasks

1. Classification 

• With existing setup, get excellent performance with simple DNN 
(not a CNN). 

2. Energy Regression (Wednesday) 

• Hasn’t been looked at… 

• Interesting issues, e.g. accounting for known calorimetric 
resolution. 

3. Generative Models (Wednesday) 

• One of the primary challenges. 



LArTPC Dataset
• Training samples have been at best ~100k 

examples…. usually much less. 

• My students (S. Shahsavarani and G. Hilliard) 
simulated a huge sample of LArTPC events 
(LArIAT Detector). 

• Necessitated by Energy Regression studies. 

• 1 M of every particle species: e±, p±, K±, π±, 
π0, μ±, γ, νe, νμ, ντ 

• Flat Energy distribution. 

• Note that though this data is large, LArIAT is the 
smallest LArTPC detector with 2 x 240 wires.  

• DUNE will have 1 M wires. 

• Have been working with P. Sadowski (UCI) to 
build inception-based CNN.



π+ κ+ μ+ e+ γ

DNN 74.42% 40.67% 6.37% 0.12% 0%
LArIAT
Analysi

74.5% 68.8% 88.4% 6.8% 2.4%

π– κ- μ- e- γ

DNN 78.68% 54.47% 13.54% 0.11% 0.25%
LArIAT
Analysi

78.7% 73.4% 91.0% 7.5% 2.4%

LArIAT: 
DNN vs Alg



LArTPC Data Details
• 1 M of each particle type. Separate files for each files for each particle type. 

• For training they need to be mixed. 

• Images are large, so they are usually down-sampled. 

• Subset today… about 2.2 TB. 

• Each “event” is two types of files: 

• 2D: LArTPC Reconstruction + True Info 

• images: (NEvents, 2, 240, 4096) 

• True: Energy, Px, Py, Pz,  

• Neutrino Truth: lep_mom_truth, nu_energy_truth, mode_truth 

• Track_length 

• 3D: Truth only 

• trajectory/C: x,y,z of charge deposits  

• trajectory/V: deposited charge



!  2D Vs. 3D images 
•  As electrons drift toward APA, they represent 

tomographic cross sections at each time slice  

•  Combining the images on the time slices results in the 
full 3D object  
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LArTPC Challenges/Tasks
1.Classification: (Monday) 

• Automatic reconstruction has proven to be very challenging 

• CNNs have shown to perform better on classification… on down sampled data. 

• Neither has achieved the performance assumed to be achievable for DUNE to 
achieve  

• Particles: ~90% efficiency, 1% fake  

• Neutrino: ~80% efficiency, 1% fake 

2. Energy Regression (Wednesday) 

• Our first attempts didn’t give good result. 

• Models should estimate error. Account for  

3. 2D to 3D (Friday) 

• LArTPC wire readout necessary due to heat load. 

• Full Pixelized readout would give ~ N
2

 datapoint/time slice 

• Wire readout give ~2N datapoint/time 

• Information loss is “recovered” in reconstruction by assuming particle interaction 
topologies (track, shower, …) 

• Tomographic approach (Wirecell) “resolves” ambiguities through costly Markov Chain 
MC 

• Perhaps a DNN can learn the topologies and infer a 3D image 

4. Noise suppression… 



NEXT Experiment
• Neutrinoless Double Beta Decay using Gas 

TPC/SiPMs 

• Signal: 2 Electrons. Bkg: 1 Electron. 

• Hard to distinguish due to multiple scattering. 

• 3D readout… candidate for 3D Conv Nets. 

• Just a handful of signal events will lead to 
noble prize 

• Can we trust a DNN at this level?
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Why high pressure gas?

• Topological reconstruction:!

• ßß events in Xe gas at 15 bar are twisted tracks of ~10 cm length with high 
energy deposits at either end. 

• Single electrons from natural radioactivity will only have a high energy 
deposit at one end.
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Figure 1. Monte-Carlo simulation of a 136Xe bb0n event in xenon gas at 10 bar: the ionization track, about
30 cm long, is tortuous because of multiple scattering, and has larger depositions or blobs in both ends.

Figure 2. The Separate, Optimized Functions (SOFT) concept in the NEXT experiment: EL light generated
at the anode is recorded in the photosensor plane right behind it and used for tracking; it is also recorded in
the photosensor plane behind the transparent cathode and used for a precise energy measurement.

3.1 Development of the NEXT project: R&D and prototypes

During the last three years, the NEXT R&D program has focused in the construction, commission-
ing and operation of three prototypes:

• NEXT-DBDM,shown in figure 3. This is an electroluminescent TPC equipped with a compact
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NEXT Detector Optimization
• Idea 1: use DNNs to optimize detector. 

• Simulate data at different resolutions 

• Use DNN to quickly/easily assess best performance for given resolution.

Examples of simulated events
• Simulated signal (below) and background (above) events: 2x2x2 mm voxels

• Simulated signal (below) and background (above) events: 10x10x5 mm voxels

Examples of simulated events

Table 3. Summary of DNN analysis for different Monte Carlo datasets. The accuracy was com-
puted assuming that the classification of the DNN corresponded to the category (signal or back-
ground) with the higher (> 50%) probability. In each case, approximately 15000 signal and 15000
background events were used in the training procedure, and between 2000-3000 signal and 2000-3000
background events independent of the training set were used to determine the accuracy.

2x2x2 voxels Run description Avg. accuracy (%)
Toy MC, ideal 99.8

Toy MC, realistic 0⌫�� distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3

Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic 0⌫�� distribution, double multiple scattering 97.8

Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0

Xe box, no brem. 92.4
Xe box, all physics 92.1

NEXT-100 GEANT4 91.6
10x10x5 voxels

NEXT-100 GEANT4 84.5

at the ends of the tracks produced by energetic electrons. The production of secondaries
coupled with energy fluctuations in energy deposition seems to be the principle cause of
accuracy loss in the DNN analysis. Future studies geared toward developing a DNN targeted
on the problem at hand, and attempting to extract information on what characteristics of
the tracks it is “learning,” would lead to a more complete understanding of the possibilities
and limitations of a DNN-based analysis.
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be chosen for determining whether an event is classified as signal or background. It can be
simply chosen as 50%, meaning the category with greatest probability is the classification
of the event, or it can be varied to reject further background at the expense of signal
efficiency. Figure 8 shows the corresponding pairs of signal efficiency and background
rejection produced by variation of this threshold, while for the values reported in table
2 the threshold was chosen such that the signal efficiency matched that reported in the
conventional analysis. Note that to optimize the sensitivity to 0⌫�� decay, one would seek
to maximize the ratio of signal events detected divided by the square root of background
events accepted (see [14]). Thus we define a figure of merit F = n

s

/

p
n

b

, where s and b are
the fractions of signal and background events accepted. This quantity is shown alongside
the plot of signal efficiency vs. background rejection in Fig. 8. In table 2 we reported
the values of background rejection corresponding to the signal efficiencies studied in the
classical analysis, though these did not optimize the figure of merit. For optimal figures
of merit, we would have signal efficiency of 69.0% (62.5%) and background acceptance of
2.5% (5.8%) for 2x2x2 mm3 (10x10x5 mm3) voxels.

Figure 8. Signal efficiency vs. background rejection for DNN analysis of voxelized (2x2x2 and
10x10x5 cubic mm), single-track NEXT-100 Monte Carlo events. The figure of merit F to be
maximized in an optimal 0⌫�� search is also shown as a function of background rejection.

6.2 Evaluating the DNN analysis

We now ask what is causing some significant fraction of the events to be misclassified in
the analysis described in section 6.1. To address this, a similar analysis was run on several
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6 Event classification with a DNN

Here we investigate the performance of a DNN in classifying events into two categories,
“signal” and “background,” and compare the results to the conventional analysis described in
section 4.2. We chose to use the GoogLeNet DNN for this initial study, as its implementation
was readily available in the Caffe [12] deep learning framework along with an interface,
DIGITS [4], which allows for fast creation of image datasets and facilitates their input to
several DNN models. In order to generate large numbers of events with which to train
the DNN, an alternate GEANT-based Monte Carlo, which we call the “xenon box” (Xe
box) Monte Carlo, was run in which the NEXT-100 detector geometry was not present,
and background events (single electrons) and signal events (two electrons emitted from a
common vertex with a realistic 0⌫�� energy distribution) were generated in a large box
of pure xenon gas at 15 bar. These events were then subject to the same voxelization
procedure and single-track cut as described in section 2.1.

For two different configurations of voxel size, GoogLeNet was trained on 202400 Xe box
input events using one or more NVidia GeForce GPUs. Each event was input to the net as
a .png image consisting of three color (RGB) channels, one for each of three projections of
the 3D voxelized track, (R, G, B) ! (xy, yz, xz). This information for a signal event and
a background event was shown earlier for different voxelizations in Fig. 4 and Fig. 5.

6.1 Analysis of NEXT-100 Monte Carlo

To compare the ability of the DNN to classify events directly with the performance of the
topological analysis of section 4.2, we consider NEXT-100 Monte Carlo events that have
passed the pre-selection cuts described in 4.1, with chosen voxel sizes of both 2 x 2 x 2 mm3

and 10 x 10 x 5 mm3. For each chosen voxel size, Monte Carlo events that were subject to
the standard “blob cuts” of the classical analysis were classified by the corresponding DNN
trained using Xe box events. Note that the background events used in this comparison
were those produced by the 214 Bi decay. The results are shown in table 2. The DNN
analysis performs better than the conventional analysis, but there is still potential room for
improvement.

Table 2. Comparison of conventional and DNN-based analyses. The comparison shows, for a given
percentage of signal events correctly classified, the number of background (214Bi) events accepted
(mistakenly classified as signal).

Analysis Signal eff. (%) B.G. accepted (%)
DNN analysis (2 x 2 x 2 voxels) 86.2 4.7

Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4

Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

Because the output layer of the DNN gives a probability that a given event is signal
and a probability that it is background, and these probabilities add to 1, a threshold may
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• Idea 2: systematically study the relative importance of various physics/detector effects. 

• Start with simplified simulation. Use DNN to assess performance. 

• Turn on effects one-by-one.



Software



Technical Challenges
• Datasets are too large to fit in memory. 

• Data comes as many h5 files, each containing O(1000) events, organized into directories by particle type. 

• For training, data needs to be read, mixed, “labeled”, possibly augmented, and normalized…. can be time 
consuming. 

• Very difficult to keep the GPU fed with data. GPU utilization often < 10%, rarely > 50%. 

• Keras python multi-process generator mechanism has limitations…  

• So I wrote a standalone parallel generator… DLGenerators: 

• Generic Design: 

• Specify keys of objects you want to read and list of files in each class. 

• Pre-process function: runs in parallel. Good for normalization / reformatting / augmentation 

• Post-process function: not run in parallel. Re-grouping objects to fit network architecture. 

• Simple… useful even when parallelization is not necessary: 

• Handles class/file book-keeping and mixing. 

• Automatically caches data to disk, so 2nd epoch run much faster. 

• Scales up to ~40 processes almost linearly… 

• Gains for > ~40, but less efficient because file handles collisions.



DLKit
• Thin layer on top of Keras. 

• My personal DNN framework. I imagine many of you would write 
something similar…  

• Handles book keeping for comparing large number of training sessions 
(e.g. for hyper parameter scan or optimization) 

• Model Wrapper that book keeps instantiation, training, and evaluation 
parameters. 

• Permutator that produces configurations with unique index. 

• Tools necessary to setup HEP problems. 

• Sparse Tensor: store sparse N-Dim data or turn particle trajectories 
into images on fly. 

• Calls backs: gracefully stop training based on running time, catching 
signals, AUC, … 

• Generators: for data reading. 

• Analysis: standard analysis methods for typical plots. 

• Loss functions: for physics regression targets.



CaloDNN / LArTPCDNN /
NEXTDNN

• Instantiates generators for efficiently reading or premixing 
data. 

• Provides out-of-the-box running. 

• Orchestrates running large HP scans. 

• Makes tables…  

• Jupyter notebook-based analysis. 

• Generates standard plots. 

• https://github.com/UTA-HEP-Computing/CaloDNN 

• Gearing up for a big BlueWaters run… 

• Large HP Scan (not optimization) 

• “Regularization”: training time. 

• Can be configured for other data… let me know if you want 
to try it with LCD data.

https://github.com/UTA-HEP-Computing/CaloDNN
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UTA-DL Cluster
• Register for accounts: 

• https://www.utadl.org 

• Once we approve, you’ll get an email. 

• Machines 

• Oscar: (head node) 

• 6-core Xeon 

• 2 GPUs (Kepler/Maxwell) 

• Thingone/Thingtwo:  

• 6-core i7 

• 4 GTX 1080s in each 

• Super: 

• 2x 12-core Xeon 

• 4 GTX 1080s 

• TheCount: 

• 2x 22-core xeon 

• 10Titan X (Pascal) 

• 100 TB storage. 10G network. SSD cache on every machine.

https://www.utadl.org


• Request account: 

• https://www.utadl.org 

• wait for email. 

• Create tunnel: 

• ssh -NfL 8000:localhost:8000 
<username>@orodruin.uta.edu 

• Point browser to: 127.0.0.1:8000

https://www.utadl.org

